久久精品国产第一区二区三区_av无码a在线观看_久久天堂无码AV网站_日韩一区二区免费视频十八禁_亚洲综合憿情五月丁香小说_亚洲av日韩av无码尤物

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章簡析電動(dòng)汽車的有序充電管理及其對(duì)配網(wǎng)的影響分析

簡析電動(dòng)汽車的有序充電管理及其對(duì)配網(wǎng)的影響分析

更新時(shí)間:2023-10-23點(diǎn)擊次數(shù):234

吳柯霓

安科瑞電氣股份有限公司 上海嘉定201801

摘要:電動(dòng)汽車以無序充電方式接入配電網(wǎng)時(shí)與網(wǎng)內(nèi)基礎(chǔ)用電負(fù)荷疊加,會(huì)形成峰上加峰的現(xiàn)象,不利于配電網(wǎng)的穩(wěn)定運(yùn)行。針對(duì)上述問題,首先對(duì)私家車充電負(fù)荷進(jìn)行建模,采用蒙特卡羅抽樣模擬電動(dòng)汽車無序行為下的充電負(fù)荷曲線。然后提出一種新型的多時(shí)段動(dòng)態(tài)充電價(jià)格機(jī)制,引導(dǎo)車主有序充電,并以配電網(wǎng)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù),優(yōu)化電動(dòng)汽車充電行為。比較后在IEEEE3節(jié)點(diǎn)配電網(wǎng)中,分別分析有序和無序充電負(fù)荷并網(wǎng)時(shí)電動(dòng)汽車充電費(fèi)用、配電網(wǎng)電壓偏移率及網(wǎng)損,結(jié)果表明所提策略可有效兼顧用戶利益和配電網(wǎng)的穩(wěn)定運(yùn)行。

關(guān)鍵詞:電動(dòng)汽車;配電網(wǎng);多時(shí)段動(dòng)態(tài)充電價(jià)格;電壓偏移;網(wǎng)損

0引言

伴隨我國能源結(jié)構(gòu)的調(diào)整,制定以綠色新能源為主體的新型電力系統(tǒng)可為推進(jìn)國家“雙碳"目標(biāo)的早日實(shí)現(xiàn)發(fā)揮積極作用,電動(dòng)汽車的推廣和應(yīng)用在節(jié)能減排方面有優(yōu)勢(shì),推進(jìn)電動(dòng)汽車發(fā)展是推動(dòng)我國能源轉(zhuǎn)型發(fā)展的重要環(huán)節(jié)。雖然電動(dòng)汽車的存在為人們出行帶來了巨大的便利,但由于其充電行為具有不確定性,大量無序、隨機(jī)的負(fù)荷直接并網(wǎng)會(huì)對(duì)配電網(wǎng)造成許多不可預(yù)知的負(fù)面影響。因此應(yīng)大力推廣對(duì)電動(dòng)汽車的有序充電管理,以兼顧電網(wǎng)安全、經(jīng)濟(jì)效益和用戶利益.在解決電動(dòng)汽車并網(wǎng)時(shí)如何管控的問題上,已有學(xué)者進(jìn)行研究?紤]到配電網(wǎng)用電峰谷差較大導(dǎo)致變壓器過載和產(chǎn)生大量網(wǎng)內(nèi)損耗,提出了一種對(duì)電動(dòng)汽車充電功率進(jìn)行實(shí)時(shí)優(yōu)化的策略,算例結(jié)果表明該策略可以有效降低網(wǎng)損。針對(duì)大規(guī)模電動(dòng)汽車入網(wǎng)現(xiàn)象,根據(jù)網(wǎng)內(nèi)用電負(fù)荷狀態(tài)及電動(dòng)汽車充電需求等實(shí)時(shí)數(shù)據(jù),利用模糊控制算法對(duì)電動(dòng)汽車的充電行為做有序優(yōu)化,有效避免了大規(guī)模車群入網(wǎng)引起的負(fù)荷尖峰問題。將電動(dòng)汽車電池的可放比較大容量為選定優(yōu)化目標(biāo),通過競(jìng)價(jià)的方法,引導(dǎo)用戶在用電高峰時(shí)間段利用電動(dòng)汽車的V2G技術(shù)饋電給電網(wǎng),以達(dá)到“削峰填谷"的效果;谔摂M電價(jià),考慮以系統(tǒng)負(fù)荷峰谷差比較小、用戶經(jīng)濟(jì)性指標(biāo)比較大和電池的折舊費(fèi)用比較小為目標(biāo)對(duì)電動(dòng)汽車建模,通過仿真算例證明了該策略提出的有效性。提出了一種基于峰谷分時(shí)電價(jià)為背景的,考慮電動(dòng)汽車充放電隨機(jī)性的有序充放電策略,使得電動(dòng)汽車在負(fù)荷高峰期向網(wǎng)饋電,負(fù)荷低谷期充電,平滑了網(wǎng)內(nèi)用電曲線。以分時(shí)電價(jià)為背景,構(gòu)建同時(shí)考慮用戶用電繳費(fèi)情況和負(fù)荷穩(wěn)定性的多目標(biāo)優(yōu)化調(diào)度模型,使電動(dòng)汽車參與有序充電管理規(guī)劃。通過算例分析驗(yàn)證了該方法不但可以減小負(fù)荷的峰谷差,還能提高用戶用電的經(jīng)濟(jì)效益。上述文獻(xiàn)中,學(xué)者從電網(wǎng)側(cè)角度通過對(duì)電動(dòng)汽車的充電特性直接調(diào)度或是從用戶側(cè)角度利用價(jià)格引導(dǎo)電動(dòng)汽車優(yōu)化充電行為來滿足電網(wǎng)功率的調(diào)節(jié)。前者的直接調(diào)度僅考慮了對(duì)電網(wǎng)的影響,沒有調(diào)動(dòng)用戶用電的主觀意愿,實(shí)施推廣具有難度;后者雖然利用價(jià)格因素很好調(diào)動(dòng)了用戶參與性,但現(xiàn)有的分時(shí)電價(jià)分區(qū)少,限制了調(diào)度的比較優(yōu)可能性。因此本文以私家車并入配電網(wǎng)為研究對(duì)象,根據(jù)短期負(fù)荷預(yù)測(cè)為基礎(chǔ)提出一種新型的多時(shí)段動(dòng)態(tài)電價(jià)策略,引導(dǎo)電動(dòng)汽車有序充電。對(duì)用戶用電繳費(fèi)、配電網(wǎng)的電壓偏移及網(wǎng)損情況加以分析后,驗(yàn)證了所提出的價(jià)格機(jī)制可以引導(dǎo)電動(dòng)汽車有序充電,并兼顧配電網(wǎng)系統(tǒng)的穩(wěn)定運(yùn)行和用戶利益。

1私家車無序模式充電模型

本文從以下4個(gè)方面構(gòu)建電動(dòng)汽車的充電模型。a?電動(dòng)汽車電池特性本文選用鋰電池為研究對(duì)象。與普通汽車相同,不同類型私家車電池容量有差異。

834542f9a6d2f5d4001cd011a2251d26_520d90180b7a42d1a332f64fa94deda8.png

式中fQ為私家車鋰電池容量的概率密度;x表示該時(shí)刻的電池容量大小,一般取值為20-30kwh。鋰電池充電變化過程如圖1所示。由于充電起始過程和結(jié)束過程的時(shí)間非常短暫,可以近似地認(rèn)為鋰電池充電是恒功率充電。b?車主日行駛里程本文引用美國交通部汽車日出行數(shù)據(jù)進(jìn)行分析

8d5489793faec397603a05ffffba883a_114f67ea977a4347b3ce4e8bf556d261.png

計(jì)算[13],可知電動(dòng)汽車車主每日用車行駛里程數(shù)的概率密度函數(shù)為

d6039531f42abcd8fe5c7961d294d313_00663c861be74cb9ac4ab0d59d8c3ca7.png

式中:fD為車主日行駛里程的概率密度函數(shù);μD為期望值;σD為標(biāo)準(zhǔn)差。c?車主比較后歸程時(shí)刻假設(shè)車主每日結(jié)束行程時(shí)刻即為電動(dòng)汽車每日開始充電時(shí)刻,比較后歸程概率密度函數(shù)為

6f1b686d25bd9fc99ca1ccc10acb12dd_f6caa6a84799450d82093173a25d2f51.png

式中:fs為車主比較后規(guī)程的概率密度函數(shù);w為回家時(shí)刻;μs為期望值;σs為標(biāo)準(zhǔn)差。d?車主離家時(shí)間假設(shè)車主每日用車期間只可放電不可充電,出行開始時(shí)刻的概率密度函數(shù)為

ee83425f5ed716bc2c77d686aa618126_23eb3e819a9a4b2e8e8d6ea02c048979.png

式中:fe為車主啟程離家的概率密度函數(shù);v為離家時(shí)刻。結(jié)合用戶出行數(shù)據(jù)及電動(dòng)汽車充電模型利用蒙特卡洛算法,得到500輛電動(dòng)汽車的24h無序充電負(fù)荷曲線,如圖2所示。

dda739bd76b6e1bdd8e8bbdc04d3e9a9_c3de4da972d14a1f80d0599356339a22.png

2多時(shí)段動(dòng)態(tài)電價(jià)下電動(dòng)汽車有序充電模型

2.1多時(shí)段動(dòng)態(tài)電價(jià)區(qū)間劃分

傳統(tǒng)的分時(shí)電價(jià)一旦制定后其區(qū)間不再變化,但居民的用電行為會(huì)隨著季節(jié)變化、地域不同和個(gè)人舒適度而改變,與原分時(shí)電價(jià)的價(jià)格區(qū)間范圍有偏差,產(chǎn)生負(fù)荷和電價(jià)的峰谷不匹配的現(xiàn)象。而電動(dòng)汽車的充電行為在時(shí)間上有很大隨機(jī)性,導(dǎo)致實(shí)時(shí)電價(jià)的制定考慮因素十分復(fù)雜。因此本文根據(jù)短期負(fù)荷預(yù)測(cè)為基礎(chǔ)提出一種新型的多時(shí)段動(dòng)態(tài)電價(jià)策略。目前為止,隸屬度函數(shù)是對(duì)傳統(tǒng)用電價(jià)格進(jìn)行劃分的比較成熟且通用性比較廣的方法。以表1某地區(qū)分時(shí)電價(jià)為例,首先基于模糊數(shù)學(xué)的理論,可將每個(gè)時(shí)間段認(rèn)為是一個(gè)獨(dú)立的模糊集合,然后利用隸屬度函數(shù)構(gòu)建時(shí)段內(nèi)每時(shí)刻對(duì)應(yīng)的隸屬度,并根據(jù)隸屬度值將其劃分到對(duì)應(yīng)的時(shí)間段[14]。再將短期預(yù)測(cè)的基礎(chǔ)負(fù)荷劃分成多時(shí)段,根據(jù)每時(shí)段對(duì)應(yīng)的負(fù)荷值計(jì)算相對(duì)應(yīng)的電價(jià)。

ed12048d6af846612fee393c899063bb_728c3131d9e34a11926d67bdba552425.png

3b0011c2640b4fa48d1b15a2a6771595_f5d324a2a79b42af9698d0003ba611cf.png

式中:Cmax和Cmin分別為分時(shí)電價(jià)的峰值與谷值;C?為每時(shí)段負(fù)荷在價(jià)格區(qū)間上的映射。

7a6c0bb4e2d9f6437be1afe0344682bd_907116d978544fe1bc4b7fdf5a8186a2.png

式中:Ci為精準(zhǔn)。

3f92e6608f0cb74fc740f8a142ba5aad_7a74eebe3ed84cd69046d62d14b9d146.png

2.2電動(dòng)汽車有序充電策略

電動(dòng)汽車聚合商是專門針對(duì)電動(dòng)汽車充電進(jìn)行資源整合的參與者,其部署的智能充電樁可提供常規(guī)充電模式和充電優(yōu)化模式。常規(guī)充電模式可將電動(dòng)汽車的電池充至期望電量值,而優(yōu)化模式則需要根據(jù)車主個(gè)人用電需求輸入結(jié)束充電時(shí)刻及結(jié)束時(shí)刻的充電期望值。車輛接入后,充電樁將獲取該車信息,將輸入值及車電池的剩余電量反饋到系統(tǒng)調(diào)度中間,對(duì)收集的數(shù)據(jù)進(jìn)行在線智能計(jì)算,形成電動(dòng)汽車的充電計(jì)劃。

2.3目標(biāo)函數(shù)

本文以網(wǎng)內(nèi)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù)。

7c7ed0965a52b1d2aba6da859defe77f_198a3647b42943d3aa54e9badfbf2a57.png

式中:F為目標(biāo)函數(shù);N為谷時(shí)段數(shù)目;Pi為第i個(gè)時(shí)段配電網(wǎng)的基礎(chǔ)負(fù)荷值。

2.4約束條件

8d335c5ff18ad4b3118825bb9cbfd6d7_ea7cf472d4ec4c299610a9b23b09225b.png

小值和比較大值。

Bu充電時(shí)段T約束Ts≤T≤Te(12)式中:Ts為車主每日充電開始時(shí)刻;Te為當(dāng)天充電結(jié)束時(shí)刻。c?總電量S約束本文優(yōu)化中不計(jì)電池?fù)p耗,假設(shè)電池容量為恒定值。

dcebbf9c8335add167daf08530121f41_dd3fb69580ce4fb2863113382ae2fe08.pngdcebbf9c8335add167daf08530121f41_dd3fb69580ce4fb2863113382ae2fe08.png

式中:K為充電的電動(dòng)汽車數(shù)目;Tchi為第i輛車總充電時(shí)間。

2.5算法求解

傳統(tǒng)的遺傳算法是一種起源于生物進(jìn)化規(guī)律演變的尋優(yōu)算法。從任意初始種群開始,通過選擇、交叉、變異等環(huán)節(jié),產(chǎn)生一些對(duì)環(huán)境適應(yīng)度高的個(gè)體并進(jìn)入搜索空間中更好的區(qū)域,不斷繁衍進(jìn)化,比較終得到比較大適應(yīng)度的個(gè)體作為比較優(yōu)解輸出。但由于進(jìn)化過程中交叉概率參數(shù)及變異概率參數(shù)為定值,忽略了進(jìn)化過程中種群的自適應(yīng)特性,存在過早收斂的缺陷。且算法沒有保留精英機(jī)制,適應(yīng)度高的個(gè)體可能在進(jìn)化中丟失好的基因。為了解決以上問題,本文采用自適應(yīng)交叉概率Kc和自適應(yīng)變異概率Km以及精英保留機(jī)制進(jìn)行優(yōu)化求解[15]。自適應(yīng)交叉概率Kc和自適應(yīng)變異概率Km公式如下:

4c3c06175f075c6874886ae17df61711_4a8d07c2d32242fc9fbb5ab9b7560576.png

式中:K1為基礎(chǔ)交叉概率;fmax為個(gè)體比較大適應(yīng)度;fav為個(gè)體適應(yīng)度值的平均值;fl為每相鄰交叉?zhèn)體中較大的適應(yīng)度。

a26b9690ff4b2f8db730dd4d58fe0bee_285082b73e0341d48204beef6f3026a6.png

式中:K2為基礎(chǔ)變異概率;fi為第I代進(jìn)化的閾值,公式如下:

c54a4c0e6554fd2764b85befbfeaa498_07dd0ad3137f453cbc43f675389b28bb.png

式中:fiI為第i個(gè)個(gè)體;Keep=1,則精英保留,Keep=0,則不保留。優(yōu)化過程如圖4。

54274a7943cc82c1952010fa89cc1002_ef98c1c423254ea39938cae54157048d.png

3算例仿真與分析

3.1仿真場(chǎng)景設(shè)定

本文仿真過程選擇在IEEE33節(jié)點(diǎn)配電網(wǎng)中進(jìn)行,其拓?fù)淙鐖D5所示。假設(shè)節(jié)點(diǎn)1為平衡節(jié)點(diǎn),即電源接入節(jié)點(diǎn),余下32個(gè)節(jié)點(diǎn)全部為PQ節(jié)點(diǎn)。假設(shè)整個(gè)配電網(wǎng)系統(tǒng)中含基礎(chǔ)負(fù)荷以及1500輛電動(dòng)汽車,車群被均勻分配到節(jié)點(diǎn)19,23和26中。以私家車比亞迪E1車型作為研究對(duì)象,規(guī)定每輛電動(dòng)汽車的動(dòng)力電池規(guī)格相同,參數(shù)為:220V,16A慢充模式,限制容量為35KWH,3.52KWH恒功率充電,充電效率為0.82,轉(zhuǎn)換效率為0.90

b75c4a7d2965b236d2c0862dba25e78f_bd7b6aca58324d1eb14e4b4b2b6bb834.png

3.2對(duì)用電負(fù)荷的分析

電動(dòng)汽車以不同方式充電的負(fù)荷曲線及配電網(wǎng)總負(fù)荷曲線如圖6、圖7所示。由圖6和圖7可知,通過動(dòng)態(tài)價(jià)格的引導(dǎo),電動(dòng)汽車充電行為趨于有序化,車主對(duì)充電時(shí)間段的選擇逐漸向夜間轉(zhuǎn)移,負(fù)荷峰值水平大幅度下降,說明新型電價(jià)的提出可以使車主的用電行為不再大面積集中,系統(tǒng)總用電負(fù)荷曲線相對(duì)變得平緩,有削峰填谷的效果。

7d1728d1423983e9b8435a5978ef7db4_41bee150c82f4ae7a50356d4c939484f.png

1117c6591b1212ec3c841fe8b3c2ce26_6535a640c25d46a3b92015cf2d4e7a11.png

由表2可知,無序充電車主日繳納電費(fèi)為21880.8元,基于多時(shí)段動(dòng)態(tài)電價(jià)的有序充電日繳費(fèi)為17248.80元,比無序充電費(fèi)用降低了21.17%。因此新電價(jià)機(jī)制的提出可有效降低車主充電成本。

36596f67af18d7f12f2c338a150d8ad8_3d8b05f157384b0e86d56c3c568dd810.png

3.3 對(duì)配電網(wǎng)影響分析

將IEEE33節(jié)點(diǎn)配電網(wǎng)模型的節(jié)點(diǎn)負(fù)荷參數(shù)和優(yōu)化后的有序充電負(fù)荷數(shù)據(jù)導(dǎo)入MATLAB軟件語言編程,對(duì)比以下3種場(chǎng)景下的配電網(wǎng)電壓偏移及網(wǎng)損。場(chǎng)景1:配電網(wǎng)內(nèi)未接入電動(dòng)汽車負(fù)荷。場(chǎng)景2:配電網(wǎng)內(nèi)接入無序充電負(fù)荷。場(chǎng)景3:配電網(wǎng)內(nèi)接入有序充電負(fù)荷。圖8表示部分時(shí)段下3種用電方式的網(wǎng)損率?梢18.00-24.00由于無序充電負(fù)荷的接入使得網(wǎng)內(nèi)網(wǎng)損明顯升高。原因是車主歸程后的無序充電行為與用戶基礎(chǔ)用電行為的一致性導(dǎo)致網(wǎng)內(nèi)用電功率激增。09.00-21.00時(shí),對(duì)比接入無序充電負(fù)荷和有序充電負(fù)荷,后者可有效降低配電網(wǎng)網(wǎng)損,尤其在電價(jià)高峰時(shí)段21.00網(wǎng)損率下降了2.77%,效果比較顯著。說明多時(shí)段分時(shí)電價(jià)的提出引導(dǎo)車主有序充電對(duì)調(diào)節(jié)配電網(wǎng)網(wǎng)損具有一定效果。

30e381af38d15dac2a41ce770111f0f7_6461b3ff65c242efa432e948d28fe6fa.png

由圖9可知,場(chǎng)景1配電網(wǎng)未接入充電負(fù)荷時(shí)的電壓偏移都控制在±7%以內(nèi),縱橫對(duì)比沒有發(fā)現(xiàn)嚴(yán)重的電壓偏移現(xiàn)象,但是節(jié)點(diǎn)18和19在20.00-21.00時(shí)間段上有局部節(jié)點(diǎn)處在越限邊界。由圖10可知,場(chǎng)景2中配電網(wǎng)內(nèi)接入無序充電負(fù)荷時(shí),節(jié)點(diǎn)13-19和28-33在晚間出現(xiàn)電壓越限情況,原因是無序充電負(fù)荷的高峰期恰巧與網(wǎng)內(nèi)基礎(chǔ)負(fù)荷用電的高峰期時(shí)段相疊。

7de6541f3cb1671d3c0c0afebc2aa987_c59b7e4ef43d42e3b489e74c9445dc2e.png

33f604e8f75e2be0c669a04ee7884074_6e324d9de1ab41c79135c2b6fc15fc9b.png

圖11表示場(chǎng)景3下配電網(wǎng)內(nèi)接入有序充電負(fù)荷時(shí)各個(gè)節(jié)點(diǎn)電壓的偏移情況。與圖9和圖10對(duì)比可知,有序充電負(fù)荷的接入使局部節(jié)點(diǎn)越限現(xiàn)象得到緩解,偏移的電壓回歸到正常標(biāo)準(zhǔn)范圍內(nèi)。說明所提出的新型動(dòng)態(tài)分時(shí)電價(jià)可以通過對(duì)電動(dòng)汽車進(jìn)行充電有序化管理來改善配電網(wǎng)電壓偏移現(xiàn)象。

由于大量負(fù)荷突然接入使各節(jié)點(diǎn)電壓發(fā)生偏移現(xiàn)象,因此對(duì)比較大負(fù)載量時(shí)刻(21.00)各節(jié)點(diǎn)電壓偏移情況進(jìn)行對(duì)比更有意義,結(jié)果如圖12所示。

23639582a00f4368a53db24cee1b861c_77ae74a0f39147f0bcd3803e30f88d1f.png

c6c351964d5fceab7badf9462b5514ab_27270a0bfb9d4686b3f43e29f0c82a5e.png

由圖12可知,未接入無序負(fù)荷時(shí)網(wǎng)內(nèi)各節(jié)點(diǎn)的電壓偏移都控制在±7%范圍以內(nèi),電壓無越限行為。當(dāng)無序充電負(fù)荷并網(wǎng)后,一部分節(jié)點(diǎn)電壓發(fā)生顯著偏移,且偏移量均超過規(guī)定標(biāo)準(zhǔn)范圍。而經(jīng)過多時(shí)段動(dòng)態(tài)電價(jià)策略調(diào)控的有序充電行為接入配電網(wǎng)后,網(wǎng)內(nèi)各節(jié)點(diǎn)電壓值還原到標(biāo)準(zhǔn)范圍以內(nèi),其中變化比較顯著的18號(hào)節(jié)點(diǎn)電壓標(biāo)幺值由0.9467調(diào)整到0.9828,電壓偏移率修正了3.61%。

4安科瑞充電樁收費(fèi)運(yùn)營云平臺(tái)

4.1概述

AcrelCloud-9000安科瑞充電柱收費(fèi)運(yùn)營云平臺(tái)系統(tǒng)通過物聯(lián)網(wǎng)技術(shù)對(duì)接入系統(tǒng)的電動(dòng)電動(dòng)自行車充電站以及各個(gè)充電整法行不間斷地?cái)?shù)據(jù)采集和監(jiān)控,實(shí)時(shí)監(jiān)控充電樁運(yùn)行狀態(tài),進(jìn)行充電服務(wù)、支付管理,交易結(jié)算,資要管理、電能管理,明細(xì)查詢等。同時(shí)對(duì)充電機(jī)過溫保護(hù)、漏電、充電機(jī)輸入/輸出過壓,欠壓,絕緣低各類故障進(jìn)行預(yù)警;充電樁支持以太網(wǎng)、4G或WIFI等方式接入互聯(lián)網(wǎng),用戶通過微信、支付寶,云閃付掃碼充電。

4.2應(yīng)用場(chǎng)所

適用于民用建筑、一般工業(yè)建筑、居住小區(qū)、實(shí)業(yè)單位、商業(yè)綜合體、學(xué)校、園區(qū)等充電樁模式的充電基礎(chǔ)設(shè)施設(shè)計(jì)。

4.3系統(tǒng)結(jié)構(gòu)

4.3.1系統(tǒng)分為四層:

1)即數(shù)據(jù)采集層、網(wǎng)絡(luò)傳輸層、數(shù)據(jù)中間層和客戶端層。

2)數(shù)據(jù)采集層:包括電瓶車智能充電樁通訊協(xié)議為標(biāo)準(zhǔn)modbus-rtu。電瓶車智能充電樁用于采集充電回路的電力參數(shù),并進(jìn)行電能計(jì)量和保護(hù)。

3)網(wǎng)絡(luò)傳輸層:通過4G網(wǎng)絡(luò)將數(shù)據(jù)上傳至搭建好的數(shù)據(jù)庫服務(wù)器。

4)數(shù)據(jù)中間層:包含應(yīng)用服務(wù)器和數(shù)據(jù)服務(wù)器,應(yīng)用服務(wù)器部署數(shù)據(jù)采集服務(wù)、WEB網(wǎng)站,數(shù)據(jù)服務(wù)器部署實(shí)時(shí)數(shù)據(jù)庫、歷史數(shù)據(jù)庫、基礎(chǔ)數(shù)據(jù)庫。

5)應(yīng)客戶端層:系統(tǒng)管理員可在瀏覽器中訪問電瓶車充電樁收費(fèi)平臺(tái)。終端充電用戶通過刷卡掃碼的方式啟動(dòng)充電。

小區(qū)充電平臺(tái)功能主要涵蓋充電設(shè)施智能化大屏、實(shí)時(shí)監(jiān)控、交易管理、故障管理、統(tǒng)計(jì)分析、基礎(chǔ)數(shù)據(jù)管理等功能,同時(shí)為運(yùn)維人員提供運(yùn)維APP,充電用戶提供充電小程序。

4.4安科瑞充電樁云平臺(tái)系統(tǒng)功能

4.4.1智能化大屏

智能化大屏展示站點(diǎn)分布情況,對(duì)設(shè)備狀態(tài)、設(shè)備使用率、充電次數(shù)、充電時(shí)長、充電金額、充電度數(shù)、充電樁故障等進(jìn)行統(tǒng)計(jì)顯示,同時(shí)可查看每個(gè)站點(diǎn)的站點(diǎn)信息、充電樁列表、充電記錄、收益、能耗、故障記錄等。統(tǒng)一管理小區(qū)充電樁,查看設(shè)備使用率,合理分配資源。

4.4.2.實(shí)時(shí)監(jiān)控

實(shí)時(shí)監(jiān)視充電設(shè)施運(yùn)行狀況,主要包括充電樁運(yùn)行狀態(tài)、回路狀態(tài)、充電過程中的充電電量、充電電壓/電流,充電樁告警信息等。

4.4.3交易管理

平臺(tái)管理人員可管理充電用戶賬戶,對(duì)其進(jìn)行賬戶進(jìn)行充值、退款、凍結(jié)、注銷等操作,可查看小區(qū)用戶每日的充電交易詳細(xì)信息。

4.4.4故障管理

設(shè)備自動(dòng)上報(bào)故障信息,平臺(tái)管理人員可通過平臺(tái)查看故障信息并進(jìn)行派發(fā)處理,同時(shí)運(yùn)維人員可通過運(yùn)維APP收取故障推送,運(yùn)維人員在運(yùn)維工作完成后將結(jié)果上報(bào)。充電用戶也可通過充電小程序反饋現(xiàn)場(chǎng)問題。

4.4.5統(tǒng)計(jì)分析

通過系統(tǒng)平臺(tái),從充電站點(diǎn)、充電設(shè)施、、充電時(shí)間、充電方式等不同角度,查詢充電交易統(tǒng)計(jì)信息、能耗統(tǒng)計(jì)信息等。

4.4.6基礎(chǔ)數(shù)據(jù)管理

在系統(tǒng)平臺(tái)建立運(yùn)營商戶,運(yùn)營商可建立和管理其運(yùn)營所需站點(diǎn)和充電設(shè)施,維護(hù)充電設(shè)施信息、價(jià)格策略、折扣、優(yōu)惠活動(dòng),同時(shí)可管理在線卡用戶充值、凍結(jié)和解綁。

4.4.7運(yùn)維APP

面向運(yùn)維人員使用,可以對(duì)站點(diǎn)和充電樁進(jìn)行管理、能夠進(jìn)行故障閉環(huán)處理、查詢流量卡使用情況、查詢充電\充值情況,進(jìn)行遠(yuǎn)程參數(shù)設(shè)置,同時(shí)可接收故障推送。

9a6a272a0229cf6d4075d05e34a21f9b_4b837232666c4bafa7dbedf60e435c41.jpegb6bef522b3c8ae13069a18ea96321c38_6743cd58f57e401fa99d2514f9d514ba.jpeg

b6bef522b3c8ae13069a18ea96321c38_6743cd58f57e401fa99d2514f9d514ba.jpegb6bef522b3c8ae13069a18ea96321c38_6743cd58f57e401fa99d2514f9d514ba.jpeg

4.4.8充電小程序

面向充電用戶使用,可查看附近空閑設(shè)備,主要包含掃碼充電、賬戶充值,充電卡綁定、交易查詢、故障申訴等功能。

image.png

4.5系統(tǒng)硬件配置

 

5結(jié)語

本文基于分時(shí)電價(jià)與短期負(fù)荷預(yù)測(cè)提出了一種新型多時(shí)段動(dòng)態(tài)充電價(jià)格機(jī)制,引導(dǎo)車主規(guī)劃用車安排,使充電行為由無序變?yōu)橛行。建立以配電網(wǎng)內(nèi)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù),利用MATLAB軟件進(jìn)行算法編程,結(jié)果表明所提出的多時(shí)段動(dòng)態(tài)電價(jià)策略可減小網(wǎng)內(nèi)的負(fù)荷波動(dòng),有明顯的削峰填谷作用,為車主減少21.17%的充電成本。此外還有效降低了21.00用電高峰期2.77%的網(wǎng)損率并修正18號(hào)節(jié)點(diǎn)3.61%的電壓偏移率,實(shí)現(xiàn)了保證車主充電利益與提高配電網(wǎng)運(yùn)行安全的并存。


參考文獻(xiàn)

于瀛涵,陳嘉德,韓子?jì)?苑舜,馬卓.《電動(dòng)汽車的有序電管理及其對(duì)配電網(wǎng)的影響分析》

陳麗丹,張堯,電動(dòng)汽車充放電負(fù)荷預(yù)測(cè)研究綜述[J].電力系統(tǒng)自動(dòng)化,2019,43(10):177-191.

梅哲,詹紅霞,楊孝華等.考慮電流保護(hù)的配電網(wǎng)電動(dòng)汽車與分布式能源配合優(yōu)化運(yùn)行策略[J].電力自動(dòng)化設(shè)備,2020,40(2):89-102

王晛,張華君,張少華.風(fēng)電和電動(dòng)汽車組成虛擬電廠參與電力市場(chǎng)的博弈模型[J].電力系統(tǒng)自動(dòng)化,2019.43(3):155-162.

趙傳立,劉莉,孫峰等.電動(dòng)汽車放電對(duì)配電網(wǎng)電能質(zhì)量影響[J].東北電力技術(shù),2016,37(9):41-44.

郭帥,李家玨,黃旭,等.含電動(dòng)汽車的電網(wǎng)負(fù)荷結(jié)構(gòu)時(shí)序模型計(jì)算方法[J].東北電力技術(shù),2016,37(9):1-5

《安科瑞企業(yè)微電網(wǎng)設(shè)計(jì)與應(yīng)用手冊(cè)》.2022.05版.


作者簡介

吳柯霓,女,安科瑞電氣股份有限公司,從事電氣相關(guān)物聯(lián)網(wǎng)系統(tǒng)研發(fā)工作